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Figure 1: Architecture of SAM

ABSTRACT
Segment Anything Model (SAM) is a foundation model for natu-
ral image segmentation. Its novel architecture and large training
dataset have helped it become a hot topic in computer vision. How-
ever, research shows the standard version of SAM is less accurate
when applied to other image domains. Medical images for example
tend to have lower colour contrast, more complex object shapes
and less available training data. These and other factors limit the
accuracy of SAM when applied to other models. This review ex-
plores attempts made to address the aforementioned challenges
SAM faces with medical images. A brief look is also taken at how
SAM overcomes similar challenges in other image domains. Pa-
rameter Efficient Fine-Tuning, prompt engineering and custom
dataset curation were found to be the most successful improvement
strategies across the domains considered.
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1 INTRODUCTION
Image segmentation is the selection of semantically related pixels
in an image. Similar to how a photographer can focus on different
objects when taking a picture. An extension of this is semantic
segmentation. Seen in Figure 2, the selected groups of pixels are
labelled according to their properties [14]. In 2023, Meta released
Segment Anything Model (SAM) [9]. It has since become a common

Figure 2: Comparison of original image to semantic masks
generated by SAM

benchmark for assessing natural image segmentation. SAM offers
four different prompting methods. Its vast training dataset also
allows it to have good zero-shot transfer when applied to unseen
data.

However, SAM is not well suited to segmenting medical images.
When tested against other segmentation models like U-NET and
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UCTransNet [10, 20] SAM appears less impressive. Medical images
have different object shapes, resolutions, dimensions and colour
contrasts that what SAM is trained on. This limits the amount of
correct inference that SAM can draw from medical images. Several
attempts have been made to improve the performance of SAM on
medical images. Approaches include fine-tuning model parameters
and changing prompting methods. This paper reviews variations
of SAM designed to improve its performance in under-performed
scenes with a focus on medical image segmentation. Part of this
includes identifying the strengths of different optimisations. With
this knowledge, a plan is made to improve the performance of SAM
on a subset of medical images.

2 UNDERSTANDING SAM
SAM is a promptable foundation model designed for segmenting
natural images [9] . Its main objective is zero-shot learning. This
entails transferring to new tasks with different distributions while
maintaining performance. Key to this are its transformer architec-
ture and large dataset. In the version first proposed by Vaswani
et al. [18], transformers replace the recurrent layers of traditional
neural networks with feed-forward self-attention layers. As a re-
sult, training times and layer complexity are reduced. Transformers
also use global computations that offer more parallelism. Further
work by Carion et al. [1] proved the benefits of using a transformer
architecture for image processing tasks. SAM expands on this by
using a pre-trained vision transformer (ViT). This consists of an
image encoder, prompt encoder and mask decoder. Three different
encoders come bundled with SAM. The largest, ViT-H, offers the
most dense neural network with 636 million parameters. ViT-L and
ViT-B have 308 million and 91 million parameters respectively. The
larger encoders offer better accuracy but result in slower inference
time.

Upon release, SAMwas accompanied by its large, diverse training
dataset, SA-1B. Included in the dataset are >1 billion segmentation
masks from >11 million high-resolution images [9]. When gener-
ating masks for new images, SAM offers point and bounded box
prompting. These allow for different levels of specificity and can
be adjusted to match the segmentation task.

3 IMPROVING SAM
Contrary to its name, SAM does not have the same performance
across all types of images. There are many domains where SAM
is shown to be less efficient than specified segmentation models.
Some examples include complex image shapes, shadow detection
and medical segmentation. The term "under-performed scenes"
was used by prior researchers [2, 15] to refer to these tasks that
SAM struggles with. Various experiments have been performed on
improving SAM’s accuracy in such scenes. Of particular interest
are improvements in the domain of medical images. However, to
better understand all possible improvement methods, experiments
in other domains were also studied. 1 gives a summary of those
reviewed.

3.1 Medical
3.1.1 MedSAM. [10] Regarded as one of the most popular attempts
at using SAM to the medical field. During development, it was in-
tended to serve as a foundation model for medical image segmen-
tation. As such, several specialised models have been developed
fromMedSAM and it is used as a benchmark for many more models
[7, 8, 19]. It achieves this using a collection of over a million masked
pairs from different anatomical structures and modalities. Having
such large amounts of input data improves the zero shot transfer
while sacrificing the amount of time required to train it. Unlike
SAM with three different prompting options, MedSAM is limited
to only bounding box prompts. These allow the segmentation of
3D images as a collection of 2D slices.

3.1.2 SegmentAnyBone. [6] specialises in skeletal segmentation of
Magnetic Resonance Imaging (MRI). Its 2D branch is build upon the
architecture proposed by Wu et al. [19] where Adapter blocks are
added to the the image encoder and mask decoder. These additions
allow efficient parameter tuning while keeping over 90% of the
models parameters fixed. The model also introduces hybrid prompt-
ing. Experiments tested a dynamic prompt generation algorithm.
This changes the model task from predicting corresponding mask
regions to generating all ground truth masks for an image. MRI
images offers a depth dimension when recording data. By viewing
3D images as collections of 2D slices, SegmentAnyBone is able to
make predictions on volumetric data [6]. An additional Attention
branch is added to improve performance on 3D images. This al-
lows information from neighbouring slices to be considered during
segmentation.

3.1.3 ClickSAM. [7] Another domain specificmedical imagemodel.
It improves the performance of SAM on ultrasound breast images.
Opts for point prompting to increase the accuracy of generated
masks. User supplied clicks are passed to the mask decoder and
used to generate further clicks according to the Centroidal Voronoi
Tessellation algorithm [4]. These improve the accuracy of the final
mask generated by providing feedback on the accuracy of each
point within the mask.

3.1.4 SlideSAM. [12] Intended for the segmentation of both 2D
and 3D medical images. This model makes semantic inferences
using adjacent slices of a volume. These additional slices add more
detail in multiple dimensions for a better segmentation result. A
sliding window captures three adjacent slices at a go. They are
then processed by the same encoding architecture used by SAM
[9]. A hybrid approach to prompt generation is also explored in
SlideSAM. Point prompts and bounding boxes are sampled with
equal probability from the ground truth masks. Artificial noise is
then added to the prompts for a more accurate representation of
human input.

3.1.5 Med-SA. [19] Designed to improve on MedSAM [10], this
model introduces a Space-Depth Transpose (SD-Trans) technique.
With this, the input spatial dimension is transposed to the depth
dimension. Doing so allows the same self-attention blocks to pro-
cess different dimensional information given different input. In
addition, its Hyper-Prompting Adapter (HyP-Adpt) facillitates deep
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Variation Category Methods

MedSAM Medical foundation model Large training dataset Custom prompting
SegmentAnyBOne MRI Adapter blocks, 3D Attention branch, Hybrid prompting

ClickSAM Ultrasound imaging Custom prompting
SlideSAM Medical Multi-slide inference, Custom prompting
Med-SA Medical foundation model Adapter blocks
SimAda Adaption framework Adapter blocks

Table 1: Summary of reviewed experiments

prompt adaptations. Inspired by hyper networks, prompt infor-
mation is concatenated and reduced as prompt embedding. This
allows hyper-prompting on the less parameterised adapter level.
This way, the model is can easily accommodate different modalities
and downstream tasks.

3.1.6 SimAda. [15] Offers a more general approach to model adap-
tation. SimAda is proposed as a unified framework for adapting any
kind of transformer-based model. Allows easy fine-tuning of model
parameters through the introduction of trainable adapters. This lets
the model representation better match a dataset’s feature distribu-
tion while maintaining simplicity. Also introduces the possibility
of parallel and mixed adapter designs. At their core, all transformer
networks contain multi-head self-attention layers and fully con-
nected feed-forward networks (FFN) [18]. By adding adapter blocks
in different parts of the network, four different variations of SimAda
are developed for testing on underperformed scenes.

4 DISCUSSION
Several metrics are used for assessing segmentation accuracy. The
most common ones seen were variations of the Dice loss and In-
tersection Over Union (IOU). The Sørensen-Dice coefficient [3]
measures the similarity of two samples. This is done by comparing
the intersection of said samples to the sum of the individual sam-
ples. The samples considered in image segmentation are the ground
truth masks and the predicted masks for the model. Dice loss is the
corresponding difference function, given by 1 - Dice coefficient.

𝐷𝑖𝑐𝑒 =
2|𝐴 ∩ 𝐵 |
|𝐴| + |𝐵 |

𝐿Dice = 1 − 2|𝐴 ∩ 𝐵 |
|𝐴| + |𝐵 |

(1)

IOU is calculated with the Jaccard index [13]. It as another measure
that compares the intersection of samples to their union. When
applied to binary classification tasks, it is written in terms of the
number of true positives (TP), false negatives (FN) and false posi-
tives (FP).

IOU =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(2)

All variations of SAM need accurate data to train on. The amount
of annotated medical images available is thoroughly dwarved by
the SA-1B dataset of natural images. ColonDB [15] has a total of 380
images. SegmentAnyBone [6] only had 271 images in its dataset.
WORD [12] has only a 150 chest volumes. Even if combined, all the
medical image datasets considered in the models mentioned so far
are not a fraction the size of SA-1B with over 10 million images.

Figure 3: GAN showing creation of additional synthetic data

Figure 4: Number of trainable parameters in variations of
U-Net

With such a large size difference, it would be difficult for SAM
to get the same performance on medical images that it has with
natural images. The use of synthetically generated images has the
potential to solve this issue [11]. A Generative Adversarial Network
(GAN) can be applied to generate new images from existing ones.
A general GAN architecture is shown in Figure 3. This generates
more data for model training and evaluation. As a result, models
become less prone to over-fitting their training data.

The encoders available in SAM all have large parameter counts.
ViT-B, which is the smallest available encoder, has nearly 100 mil-
lion trainable parameters. For comparison, other segmentationmod-
els like U-Net and Attention U-Net have under 10 million trainable
parameters [17]. Figure4 from that article illustrates this point .

Fine-tuning so many parameters during model training is too re-
source intensive to be feasible [5]. Most models studied instead per-
form Parameter Efficient Fine-Tuning (PEFT) [6, 12, 15, 19]. Adapter
blocks are added to different parts of the encoder pipeline. These
few blocks are fine-tuned while the remaining parameters in the
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Figure 5: Sliding window technique for 3D segmentation

model are held constant. In this way, less resources are required to
adapt the model to a new task.

Using adapters with a GELU activation function for polyp seg-
mentation [2], the mean dice coefficient of SAM went from 77.8%
in SAM to 85.0%. In the same experiment, mean IoU increased from
0.707 to 0.776. Different activation functions were used with various
success. SlideSAM [12] and SimAda [15] for example, introduce a
low rank adapter (LoRA) layers to their architecture. Hyp-Adpt [19]
contains a ReLU activation that allowed Med-SA to outperform all
other models it was compared to. Med-SA BBox 0.5 was the lowest
overall variation of the model and still achieved a mean Dice of
87.6% on the BTCV dataset. The finer-tuned MedSAM BBox 0.5 had
a significantly lower mean Dice score of 69.2%.

Similar comparisons can be drawn when assessing the perfor-
mance of SimAda [15] on the ISIC and ColonDBmedical datasets. In-
stead of Dice or IoUmetrics, experiment performancewasmeasured
using the mean absolute error (MAE). All variations of SimAda
recorded lower errors that SAM on the datasets when both used the
ViT-B architecture. The smallest improvements across all variations
were 33.2% on ISIC and 5.5% on ColonDB. In both instances, the
worst performing variation was the one using a LoRA structure.

SAM was designed for segmenting 2D images. It is unable to
directly work with higher dimensional images. However, experi-
ments show SAM can be adapted to segment 3D images [6, 12, 19].
Models typically do this by slicing the 3D structure and applying
the segmentation model to a smaller volume of the image.

This can be performed slice by slice with significant improve-
ments over other neural networks. The mean dice coefficient of
SegmentAnyBone was 86.87% [6]. This is a vast improvement over
the closest 3D model, nnUnet (3D) which only scored a dice of
73.32%. Ontop of image slicing, SegmentAnyBone incorporates a
3D attention branch that resizes and downsamples the selected
volume to a lower resolution. When added to very deep neural
networks, such branches help the model decide which branch to
focus on for making predictions [16]. Doing so allows branches in
the multi-head attention blocks of the encoders and decoders to
have better performance on 3D images.

However, some contextual information can be lost when con-
sidering each slice separately. This leads to less accurate segments
with high levels of noise between slices. A viable solution to this
is a sliding window, shown in Figure 5. Adjacent slices are added
to the embedded input when performing segmentation [12]. By
considering three slices at a time, this method returns dice scores
above 80% after a single prompt in both the WORD and CHAOS
datasets. For comparison, SAM only achieved a Dice of 74.98% on
the WORD dataset after 40 prompts.

The different prompting methods offered by SAM help it serve
as a foundation model. Another optimisation seen in specialised
models is choosing a prompting method that better suits the domain
of interest. ClickSAM [7] creates additional prompts using a system
of positive and negative clicks. These help it blow passed SAM
in performance when applied to the Dataset of Breast Ultrasound
Images (BUSI). The 0.8074 IoU MedSAM records on a malignant
tumor is irrelevant when compared to ClickSAM’s 0.9439 on the
same image. In addition, this prompting system results in faster
segmentation over MedSAM.

SlideSAM [12] uses a hybrid prompting approach. It combines
the generality of bounded boxes with the precision of point prompt-
ing. This combination of prompts compliments the sliding window
approach, helping it reach the levels of performance mentioned
earlier. Figure 6 further illustrates the level of improvement SAM
achieves over other models.

5 CONCLUSIONS
Though SAM has underwhelming performance when used for med-
ical image segmentation, its adaptability allows it to be easily opti-
mised for the task. A key factor to this is the availability of good
training data. For accurate semantic segmentation of images, SAM
must be trained on high quality, well labelled data. There is less data
available for medical images than natural images. The use of syn-
thetic images is a possible avenue for improving SAMs performance
that can be used during experiments

The large parameter sizes of the available encoders are not a
challenge when Adapter blocks are introduced to the transformer
architecture. With the majority of other parameters kept constant,
a small fraction can be freely tuned and adjusted to better help the
model understand the prevalent features of the dataset.

Despite all seeming to boost performance, there is no universal
adapter structure that always offers the best improvement. This
motivates the use of adaptation frameworks like SimAda [15] that
allow different adapter structures to be easily tested. These abstract
the design process so more time can be spent training and evaluat-
ing models. It’s therefore expected that an adaptation framework
be used to fine tune SAM instead of manually adding the adapter
blocks.

Performance increases are also possible through prompt engi-
neering. Just as there is no adapter structure that always outshines
the rest, there is also no prompting method that guarantees the best
segmentation results. Mask and point prompts offer greater preci-
sion when dealing with complex shapes like legions and tumors.
However the generality of bounded box prompts makes grouping
related pixels easier. Combinations of these and other prompting
methods can all lead to the creation of better segmentation masks.
Several prompting options are to be studied and tested when decid-
ing the final ones to be used for the chosen image domain.

3D images can be transformed into 2D vectors that SAM is able
to process. This process is faster than comparable CNNmethods for
segmenting image volumes. It also offers greater accuracy making
it a state of the art technique. The sliding window technique seen
in SlideSAM [12] is of key interest. Considering larger numbers of
adjacent small volumes at once for better segmentation accuracy is
a method that can be further tested in experiments with 3D images.
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Figure 6: Visual comparison of SlideSAM against other models on the CHAOS dataset
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